oxLDL-induced decrease in lipid order of membrane domains is inversely correlated with endothelial stiffness and network formation.

نویسندگان

  • Tzu Pin Shentu
  • Igor Titushkin
  • Dev K Singh
  • Keith J Gooch
  • Papasani V Subbaiah
  • Michael Cho
  • Irena Levitan
چکیده

Oxidized low-density lipoprotein (oxLDL) is a major factor in development of atherosclerosis. Our earlier studies have shown that exposure of endothelial cells (EC) to oxLDL increases EC stiffness, facilitates the ability of the cells to generate force, and facilitates EC network formation in three-dimensional collagen gels. In this study, we show that oxLDL induces a decrease in lipid order of membrane domains and that this effect is inversely correlated with endothelial stiffness, contractility, and network formation. Local lipid packing of cell membrane domains was assessed by Laurdan two-photon imaging, endothelial stiffness was assessed by measuring cellular elastic modulus using atomic force microscopy, cell contractility was estimated by measuring the ability of the cells to contract collagen gels, and EC angiogenic potential was estimated by visualizing endothelial networks within the same gels. The impact of oxLDL on endothelial biomechanics and network formation is fully reversed by supplying the cells with a surplus of cholesterol. Furthermore, exposing the cells to 7-keto-cholesterol, a major oxysterol component of oxLDL, or to another cholesterol analog, androstenol, also results in disruption of lipid order of membrane domains and an increase in cell stiffness. On the basis of these observations, we suggest that disruption of lipid packing of cholesterol-rich membrane domains plays a key role in oxLDL-induced changes in endothelial biomechanics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OxLDL increases endothelial stiffness, force generation, and network formation.

This study investigates the effect of oxidatively modified low density lipoprotein (OxLDL) on the biomechanical properties of human aortic endothelial cells (HAECs). We show that treatment with OxLDL results in a 90% decrease in the membrane deformability of HAECs, as determined by micropipette aspiration. Furthermore, aortic endothelial cells freshly isolated from hypercholesterolemic pigs wer...

متن کامل

Oxidized low density lipoprotein induces apoptosis in cultured human umbilical vein endothelial cells by common and unique mechanisms.

Oxidized low density lipoprotein (oxLDL) induces apoptosis in vascular cells. To elucidate the mechanisms involved in this apoptosis, we studied the apoptosis-inducing activity in lipid fractions of oxLDL and the roles of two common mechanisms, ceramide generation and the activation of caspases, in apoptosis in human umbilical vein endothelial cells treated with oxLDL. We also studied the effec...

متن کامل

Paradoxical impact of cholesterol on lipid packing and cell stiffness.

Cell stiffness or deformability is a fundamental property that is expected to play a major role in multiple cellular functions. It is well known that cell stiffness is dominated by the intracellular cytoskeleton that, together with the plasma membrane, forms a membrane-cytoskeleton envelope. However, our understanding of how lipid composition of plasma membrane regulates physical properties of ...

متن کامل

Toxicity mechanisms of Cigarette Smoke on Eye and Kidney using Isolated Mitochondria

Cigarette smoking is one of the main risk factors for premature human death associated to a variety of respiratory and vascular diseases, and cancer due to containing Hundreds of toxicants. Rat mitochondria were obtained by differential ultracentrifugation and incubated with different concentrations (1, 10 and 100%) of standardized cigarette smoke extract (CSE). Our results showed that cigarett...

متن کامل

Capillary Network Formation by Endothelial Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells

Human bone marrow derived mesenchymal stem cells (HBMSCs) have the potential to differentiate into cells such as adipocyte, osteocyte, hepatocyte and endothelial cells. In this study, the differentiation of hBMSCs into endothelial like-cells was induced in presence of vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). The differentiated endothelial cells were exam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 299 2  شماره 

صفحات  -

تاریخ انتشار 2010